Government of Alberta

Logistic Regression: Use \& Interpretation of Odds Ratio (OR)

Fu-Lin Wang, B.Med.,MPH, PhD
Epidemiologist Adjunct Assistant Professor

Fu-lin.wang@gov.ab.ca Tel. (780)422-1825

Surveillance \& Assessment Branch, AHW
Community Health Sciences, the University of Calgary

Background

- Odds: The ratio of the probability of occurrence of an event to that of nonoccurrence.
- Odds ratio (OR, relative odds): The ratio of two odds, the interpretation of the odds ratio may vary according to definition of odds and the situation under discussion.
- Consider the 2×2 table:

	Event	Non-Event
Exposure	a	b
Non-Exposure	c	d
Total	a+c	b+d

A 2x2 Table for Two Binary Variables

Smoking Non-Smoking Total

Lung Ca	No Lung Ca
80	20
20	80
100	100

Total
100
100
200

Odds for Lung Cancer smokers $=80 / 20=4.00$

- The probability of having lung cancer among smokers is 4 times of not having lung cancer.

Odds Ratio for Lung Cancer smokers $=(80 / 20) /(20 / 80)=16.00$

- The probability of developing lung cancer among smokers is 16 times of that non-smokers.

Why is the odds ratio useful?

If the odds measures exposure-disease relationship

- Determine the strength of association: Strong (OR>3), moderate ($\mathrm{OR}=1.6-3.0$), weak ($\mathrm{OR}=1.1-1.5$)
- Assess the impact of confounding variables
- Estimate the relative risk for a disease in relation to a given risk factor

Why is the odds ratio useful (cont'd)?

If the odds measures other event to non-event (reference) relationship or spatial/temporal trend

- The likelihood to delivery LBW babies for mothers 35 years or older is 2.5 -times of that for mothers 20-34 years
- The rate of MVA in Northern Alberta is 4 times more than that in Calgary
- The rate increased 2-folds, from 3 per 100,000 population in 1990 (reference) to 9 per 100,000 in 2010

Why Do We Need Logistic Regression?

- LBW was reported high in our region. Is it true?
- What are the factors that contribute to a lower rate?
- Tell me what will be the LBW rate in next 20 years in our region.

Logistic Procedure

- Logistic regression models the relationship between a binary or ordinal response variable and one or more explanatory variables.
- Logit $\left(P_{i}\right)=\log \left\{P_{i} /\left(1-P_{i}\right)\right\}=\alpha+\beta^{\prime} X_{i}$ where
$P_{i}=$ response probabilities to be modeled
$\alpha=$ intercept parameter
$\beta=$ vector of slope parameters
$X_{i}=$ vector of explanatory variables

Performing a Logistic Regression

Proc logistic data = sample;
Class mage_cat;

Model LBW = year mage_cat drug_yes drink_yes smoke_9 smoke_yes /
lackfit outroc=roc2;

Output out=Probs Predicted=Phat; run;

Why Re-Coding Data to Binary?

- While explanatory variables can be continuous and ordinal types, it is useful to recode them into binary sometime.
- When we want to use a fixed group as the reference, coding a variable into binary makes it easier to use and interpret.
- Teen age mother vs. mother 20-34 years or mother $35+$ vs. mother 20-34 years, for instance.

Re-Coding Data to Binary

data sample; set \&srcData;
Smoke_Yes=0; Smoke_9=0; Drug_Yes=0;
Drink_Yes=0; Mage_Teen=0; Mage_Old=0;
if EverSmoke = 1
if EverSmoke in (9, .)
if Street_Drug = 1
if ALCOHOL_Preg= 1
if Mage_cat= 2
if Mage_cat= $\mathbf{0}$
then Smoke_Yes=1; then Smoke_9 = 1; then Drug_Yes =1; then Drink_Yes =1;
then Mage_Old = 1; then Mage_Teen = 1; run;

Understanding Distribution - Proc Freq

Proc freq data=sample; table smoke_yes*LBW/nopercent nocol chisq cmh1;

Proc freq data=sample; table smoke_yes*(Mage_Teen Mage_Old mage_cat)/nopercent nōrow chisq cmh1;

Proc freq data=sample; table smoke_yes*(drug_yes drink_yes)/nopercent chisq;

run;

Run the Macros for Data Preparation

- \%inc '\ledm-goa-file-3luser\$lfu-lin.wang\methodology\Logistic Regressionไrecode_macro.sas';
- \%recode;

Distribution of Maternal Smoking and LBW

Low Birth Weight (<2500 g)

	1 (Yes) $n=68$	$0($ No $)$ $n=932$
$1(n=237)$	11.0%	89.0%
$0(n=763)$	5.5%	94.5%

Odds Ratio (95\%CI): 2.11 (1.27-3.53)

Use Class Statement for Odds Ratio

Proc logistic data = sample desc outest=betas2; Class mage_cat;

Model LBW = year mage_cat drug_yes drink_yes smoke_9 smoke_yes / lackfit outroc=roc2;

Output out=Probs_2 Predicted=Phat; run;

Use Recoded Data for Odds Ratio

Proc logistic data = sample desc outest=betas3;

Model LBW = year mage_Teen Mage_Old drug_yes drink_yes smoke_9 smoke_yes / lackfit outroc=roc3;

Output out=Probs_3 Predicted=Phat; run;

Run the Macros for logistic regression

- \%inc '\ledm-goa-file-3luser\$\fu-lin.wang\methodology\Logistic Regression\logistic_macro.sas';

Logistic Regression - Class Statement

Odds Ratio Estimates

Effect	Point Estimate	95\% Wald	
Confidence Limits			

Logistic Regression - Recoded Data

| | Odds Ratio Estimates
 Effect | | Point Estimate |
| :--- | :--- | :--- | :--- | | 95\% Wald |
| :--- |
| Confidence Limits |

Logistic Regression - Model Fitness

Model Fit Statistics		
Criterion	Intercept Only	Intercept \& Covariates
AIC	498.869	492.644
SC	503.777	531.906
-2 Log L	496.869	476.644

Identical for AIC, SC and -2 Log L and other statistics between two models

Association of Predicted Probabilities and			
Observed Responses			
Percent Concordant	63.4	Somers' D	0.306
Percent Discordant	32.9	Gamma	0.317
Percent Tied	3.7	Tau-a	0.039
Pairs	63376	c	0.653

Impact of Excluding Missing Smoking

Odds Ratio Estimates

Effect	Point Estimate95\% Wald Confidence Limits		
YEAR	0.961	0.862	1.071
Mage_Teen	0.785	0.290	2.124
Mage_Old	2.439	1.365	4.357
Drug_Yes	0.487	0.101	2.349
Drink_Yes	2.047	0.797	5.260
Smoke_Yes 2.288	1.299	4.028	

Interpretation of OR in Logistic Regression

- There is a moderate association between maternal smoking and LBW.
- Maternal age is associated with both LBW and maternal smoking.
- After controlling the confounding effect of maternal age (and other variables in the model), the risk for LBW among pregnant women who smoke is about 2.4 times of that non-smoking pregnant women.

Predictors of Low Birth Weight in Term Livebirths, Alberta, 1997 to 2004

eSAS, Edmonton, Nov 26, 2011

Questions?

Pease contact:

Fu-lin.Wang@gov.ab.ca

eSAS, Edmonton, Nov 26, 2011

Thank you!!

